Compartmental models for glycaemic prediction and decision-support in clinical diabetes care: promise and reality.

نویسندگان

  • E D Lehmann
  • T Deutsch
چکیده

This paper reviews and critically appraises the application of compartmental models for generating glycaemic predictions and offering clinical decision support in diabetes care. Comparisons are made with alternative algorithmic-based approaches. Unresolved issues raised for model-based techniques include the relative lack of input data necessary for generating reasonable blood glucose predictions, and the high level of uncertainty associated with such predictions which limits their use as guides for therapeutic insulin-dosage adjustments. It is concluded that compartmental model-based approaches, while not offering much benefit for clinical/therapeutic application, will have a role to play as research tools and for educational use. By contrast it is proposed that algorithmic-based approaches, especially in conjunction with telemedicine and Internet applications, are likely to see growing use for day-to-day therapeutic decision support. Randomised controlled clinical trials however will be required, together with other evaluation efforts, before algorithmic-based approaches-like any other clinical technique-can be widely adopted into routine medical practice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of gestational diabetes prediction with artificial neural network and decision tree models

Background: Gestational diabetes mellitus (GDM) is one of the most common metabolic disorders in pregnancy, which is associated with serious complications. In the event of early diagnosis of this disease, some of the maternal and fetal complications can be prevented. The aim of this study was to early predict gestational diabetes mellitus by two statistical models including artificial neural ne...

متن کامل

Smart Diabetic Screening and Managing Software, A Novel Decision Support System

Background: Diabetes is a serious chronic disease, and its increasing prevalence is a global concern. If diabetes mellitus is left untreated, poor control of blood glucose may cause long-term complications. A big challenge encountered by clinicians is the clinical management of diabetes. Many IT-based interventions such ad CDSS have been made to improve the adherence to the standard care for ch...

متن کامل

Comparison of Gestational Diabetes Prediction Between Logistic Regression, Discriminant Analysis, Decision Tree and Artificial Neural Network Models

Background and Objectives: Gestational Diabetes Mellitus (GDM) is the most common metabolic disorder in pregnancy. In case of early detection, some of its complications can be prevented. The aim of this study was to investigate early prediction of GDM by logistic regression (LR), discriminant analysis (DA), decision tree (DT) and perceptron artificial neural network (ANN) and to compare these m...

متن کامل

Early Prediction of Gestational Diabetes Using ‎Decision Tree and Artificial Neural Network Algorithms

Introduction: Gestational diabetes is associated with many short-term and long-term complications in mothers and newborns; hence, the detection of its risk factors can contribute to the timely diagnosis and prevention of relevant complications. The present study aimed to design and compare Gestational diabetes mellitus (GDM) prediction models using artificial intelligence algorithms. Materials ...

متن کامل

Diabetes Prediction by Optimizing the Nearest Neighbor Algorithm Using Genetic Algorithm

Introduction: Diabetes or diabetes mellitus is a metabolic disorder in body when the body does not produce insulin, and produced insulin cannot function normally. The presence of various signs and symptoms of this disease makes it difficult for doctors to diagnose. Data mining allows analysis of patients’ clinical data for medical decision making. The aim of this study was to provide a model fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer methods and programs in biomedicine

دوره 56 2  شماره 

صفحات  -

تاریخ انتشار 1998